GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW)
FURTHER MATHEMATICS UNIT 5 FURTHER STATISTICS B 1305U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE FURTHER MATHEMATICS

A2 UNIT 5 FURTHER STATISTICS B

SUMMER 2019 MARK SCHEME

Qu. No.	Solution	Mark	Notes
1 (a)	$\begin{array}{ll} \Sigma x=249.6 & \Sigma x^{2}=7792.26 \\ \bar{x}=31.2 \end{array}$ $\begin{aligned} & s^{2}=\frac{1}{n-1}\left(\sum x^{2}-n \bar{x}^{2}\right) \\ & =\frac{237}{350}=0.677 \ldots \ldots \end{aligned}$ $D F=7$ t value $=2.365$ Standard error $=\sqrt{\frac{0.677 \ldots}{8}}$ $C L=31.2 \pm 2.365 \times \sqrt{\frac{0.677 \ldots . .}{8}}$ $95 \% \mathrm{Cl}$ is $[30.5,31.9]$ Appropriate explanation. e.g. The Central Limit Theorem is not required because the underlying distribution is normal. e.g. The Central Limit Theorem is not used because n is small.	$\begin{gathered} \text { B1 } \\ \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \text { Total } \\ \text { [8] } \end{gathered}$	FT their DOF si FT their \bar{x}, t value and s.e. cao
$2(a)$ (b)	$\begin{aligned} & \mathrm{E}(\mathrm{X})=\theta+2 \\ & \operatorname{Var}(\mathrm{X})=3 \\ & \mathrm{E}(\bar{X})=\theta+2 \quad \text { OR } \quad \mathrm{E}(\bar{X}-2)=\theta \end{aligned}$ $\bar{X}-2$ is an unbiased estimator for θ $\begin{aligned} & \operatorname{SE}(\bar{X}-2)=\operatorname{SE}(\bar{X}) \\ & =\sqrt{\frac{3}{9}}=\frac{\sqrt{3}}{3} \text { oe } \end{aligned}$	B1 B1 M1 A1 M1 A1 Total [6]	FT their linear $E(X)$ for M1A1 Used FT their $\operatorname{Var}(\mathrm{X})$

Qu. No.	Solution	Mark	Notes
6 (a)	Valid reason. e.g. A consumer, (Hopcyn), would only be concerned with whether the company was overstating and therefore only wish to use a lower tail test. Valid reason. e.g. The company would not wish to overstate the distance the car could travel because they would be liable to have claims of false advertising brought against them, nor understate the distance the car could travel because they would like to claim the greatest mileage possible.	E1 E1	Reasonable explanations.
(b)(i) (ii)	Since $p>0.05$ there is insufficient evidence to reject H_{0}. Insufficient evidence to reject the manufacturer's claim that a one hour charge gives 123 miles of travel.	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { Total } \\ {[10]} \end{gathered}$	Alternative p value method M1 for Test statistic $=$ $\frac{122.3-123}{13.30578 \ldots / \sqrt{90}}$ if standardising. A1 p-value from tables $=0.30854$ Alternative CV method $\begin{aligned} & \mathrm{M} 1 \frac{c-123}{13.30578 \ldots / \sqrt{90}}= \\ & -1.6449 \end{aligned}$ A1 $\mathrm{c}=120.7$ B1 since $120.7<122.3$
7	H_{0} : The median number of sheep sheared by shearers from Wales and New Zealand is the same. H_{1} : The median number of sheep sheared by shearers from Wales is more than the median number of sheep sheared by shearers from New Zealand. Use of the formula $U=\sum \sum z_{i j}$ $\begin{aligned} \mathrm{U} & =7+7+7+6+6+6+5+5 & & \mathrm{U}=0+0+0+1+1+ \\ & =49 & & \mathrm{U}=7 \end{aligned}$ 49 is in the critical region OR 7 is in the critical region. There is sufficient evidence to reject H_{0}. There is sufficient evidence to suggest shearers from Wales can shear more sheep, on average, in a given time than shearers from New Zealand.	$\begin{gathered} \mathrm{B} 1 \\ \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \\ \text { M1 } \\ \\ \text { A1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { Total } \\ \text { [7] } \end{gathered}$	Accept $\begin{aligned} & H_{0}: \eta_{1}=\eta_{2} \\ & H_{1}: \eta_{1}>\eta_{2} \end{aligned}$

